
The Science of Paddling, Part 4: When is Shallow Water Shallow?

“We never reckon that we understand a thing until we can give an account of  its how and why...”

– Aristotle, The Physics

OK, so we all know that paddling in shallow water is a pain.  You trim aggressively bow down to keep 
from experiencing that “sinking feeling” in the stern, and paddle like there’s no tomorrow.  Yet when you 
hit the shallows it still feels like you’ve hit a wall.  Waves become steeper; your hull speed falls.  And heaven 
forbid if  you’re on someone’s inside as you enter a shallow water turn.  Hello, shoreline!

      So what is it that makes shallow water so challenging to paddle?  Why does your hull slow down?  Why 
do waves break toward shallow water and then steepen?  More fundamentally, why are the physics 
governing hulls in shallow water any different than deep water?  After all, it’s still just water; right?

      Yes, it’s all water.  But we inhabit a very particular environment when we paddle: the water’s surface.  
It is at this interface between air and water that our challenges arise.  The culprit is waves.  We see waves 
all around us when we’re on or around water: we watch expanding wave patterns created by a pebble cast 
into the water; we slowly rise and fall in the long-wavelength swells created by a powerboat on a lake’s far 
shore; we take a breather by surfing the waves behind another boat during a long race.  What dominates 
paddling resistance at race speeds are the surface waves caused by varying pressures around our hull as it 
moves through the water.  And the fundamental character of  these waves begins to change when the 
depth of  water beneath your hull is less than about half  your boat’s length.

      Now that we’ve let the cat out of  the bag, you can proceed to the next article.  But if  you’re curious 
about the why, consider waves moving over the surface of  water shown in Figure 1.  The water has 
average depth D.  The distance between two wave crests is defined as the wavelength, represented by the

Figure 1: Water and wave geometry.

Greek symbol λ (“lamda”).  We know from experience that waves such as this don’t just sit there, but travel 
at a certain velocity which we represent by cp.  There is a relationship between this “phase velocity” cp, the 
wavelength λ, and the depth D, 


 
 
 
 
 .
 
 
 
 (1)

      In this equation g is the gravitational acceleration constant and π is the constant “pi” (which equals 
3.1415...), and tanh is the hyperbolic tangent function.  No need to worry about tanh, as we’ll be looking 
at deep and shallow water cases where this function reduces to something very simple.  As you can see, the 
water wave’s speed is a function of  water depth and the wavelength – plus a few constants – and nothing 
else.  In other words, wave motion is a property of  the water having a free surface, whether there is a boat there 
or not.  And this wave motion must satisfy that relationship: for a given wave velocity, there is a 

D
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corresponding wavelength.  The only thing a boat does is provide what mathematician’s call a “forcing 
function” to the water’s surface, and thus initiate the waves.

      When the water is deep, e.g. the depth D is much greater than the wavelength λ, the hyperbolic 
tangent function reduces to 1.  Equation (1) then greatly simplifies its expression for the phase velocity:


 
 
 
 
 .
 
 
 
 
 
 (2)

Deep water waves, then, do not depend on the depth D, but only upon the wavelength λ.  For the next bit 
we’ll use this deep-water approximation to guide our analysis.

      We’ve all seen the wave train spreading out beside and behind a hull moving across deep water, as 
depicted in Figure 2.  These so-called “Kelvin Waves” – the same Kelvin after whom the unit of  
temperature is named – comprise divergent waves spreading out from the hull, and transverse waves that 
spanning the divergent waves.  The wave pattern depends on boat speed.  This is because the waves 
created by the canoe satisfy Equation (2), which relates wavelength λ and the wave’s phase velocity cp.  As 
the hull speed increases, the waves created by the hull follow the hull at that same speed.  And those 
waves, which are a property of  the water, must satisfy Equation (2).  Consequently, the wavelength will increase.

Figure 2: Kelvin waves.

      This leads to some interesting wave patterns alongside the hull, as depicted in Figure 3.  This shows a 
profile view of  a USCA C-1, paddled at speeds such that the transverse bow wave’s wavelength is in 
various proportions to the C-1’s length.  In Figure 3(a) the bow wavelength is half  the hull length; this 
corresponds to a paddling speed for an 18’6” C-1 of  about 4.7 mph.  As the speed increases to about 5.4 
mph the wavelength is now about two-thirds as long as the hull.  Then, when the paddling speed reaches 
about 6.7 mph, the wavelength equals the hull length.  Throughout, the transverse bow wave and stern 
wave interact.  A phenomenon called superposition causes these waves to combine constructively and 
destructively, leading to the wave pattern shown.  There is a trough in the wave pattern around and just 
aft of  midships.  As a result, the stern begins to sink a bit, since there is less water to support the rear half  
of  the hull.  This is why you need to trim a racing hull slightly bow down even in deep water; when the 
stern sinks like this the hull becomes less hydrodynamically efficient.  (Canoe designers tend to move the 
hull’s widest point aft of  midships to address this shift in buoyancy, as well as to address other 
hydrodynamic effects.)  Finally, as the hull speed surpasses 7 mph, as shown in Figure 3(d), the superposed 
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wave pattern causes the stern to sink further, requiring significant bow down trim to maintain 
hydrodynamic efficiency – plus a lot of  hard paddling to maintain this all-out sprint speed in a C-1!

Figure 3: Hull in its own wave train at increasing speeds (not to scale).

      The speed where the water wavelength equals the hull length is sometimes called the hull speed.  The 
hull speed, described by Froude in 1868, is a rule of  thumb describing the approximate maximum efficient 
speed for a so-called displacement hull.  Since racing canoes and kayaks are (at worst) semi-displacement 
hulls, this hull speed is not a speed limit, but rather an indication of  when wave drag begins to dominate 
the total drag on the hull.  A C-1 can be paddled well beyond 6.7 mph; it just takes a fair amount of  
fitness to maintain that speed.  We can characterize this drag effect using a non-dimensional ratio called 
the Froude Number.  The Froude Number Fr is the ratio of  hull speed V to the phase velocity cp (which, in 
the deep water case, corresponds to λ = L):


 
 
 
 
 
 . 
 
 
 
 
 (3)

As a rule of  thumb, the higher the Froude Number, the greater the wave resistance because of  the 
increasing amount of  energy transferred into the divergent waves.  The case depicted in Figure 3(c) 
corresponds to Fr = 1.  When Fr > 1 you’re paddling faster than the phase speed, e.g. faster than the water 
“wants” to go per Equation (2), hence the increase in overall drag force.

      So why does a hull moving through water cause waves in the first place?  Perhaps if  we could 
somehow prevent wave creation, we’d escape the effects of  wave drag.  Unfortunately, like death and taxes, 
you can’t get around the laws of  physics.  Waves arise because the shape of  the hull – any hull – deflects 
water.  Consider again a USCA C-1 moving at speed V0 as shown in Figure 4.
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Figure 4: Plan view of flow speeds adjacent to hull (not to scale) and flow speed plot.

      Once again, we adopt a paddler-centric reference frame.  This means that to an observer sitting in the 
boat the water appears to approach the hull at velocity V0 as they paddle.  The water that impinges upon 
the side of  the canoe near the bow slows down a bit to velocity v1.  As the water continues to flow past the 
hull, it accelerates a bit around the location of  maximum waterline width, reaching a velocity v2 that is a 
bit higher than your paddling speed V0.  And finally, as the water flows toward the stern it slows to velocity 
v3, which is a bit slower than the velocity adjacent to the bow since some of  the water’s energy is spent 
creating a wake.  This variation in flow speed along the side of  the hull is depicted conceptually by the 
dashed line plotted in the lower half  of  Figure 4.

      The water impinging on the bow has a certain amount of  kinetic energy, e.g. energy due to motion.  The 
kinetic energy of  a unit mass of  incoming water is expressed by


 
 
 
 
 
 ,
 
 
 
 
 (4)

where m is the mass of  water.  Since energy must be conserved, the kinetic energy at location 1 with water 
velocity v1 must equal this “incoming” energy.  However, since v1 is less then V0, and energy is conserved, 
this decrease in kinetic energy at location 1 must be augmented by an increase in potential energy there.  
Potential energy is like stored energy.  When you throw a ball into the air, the instant it leaves your hand it 
has a certain amount of  kinetic energy.  As it rises above your the ball slows, until its vertical velocity 
equals zero.  At this precise moment the baseball has only potential energy, which exactly equals the 
amount of  kinetic energy you gave it the moment it left your hand (because of  energy conservation).  As 
the ball falls to earth its potential energy is converted back into kinetic energy, and the ball picks up speed.  
It will return to your hand at the same velocity it had when you initially threw it; when it lands it will have 
the same amount of  kinetic energy as when you threw it because... energy is conserved.

      Like the ball, water can have potential energy if  you lift it up in the air.  So the energy at location 1 is 
written as the sum of  the local kinetic and potential energy, which must equal the initial amount of  kinetic 
energy:


 
 
 
 
 . 
 
 
 
 (5)

The height h1 is the displacement of  water about the average water depth D as illustrated in Figure 5.  
Conservation of  energy requires that the water height h1 be greater than the zero, e.g. the water is 
displaced above the average depth.  A similar result occurs at location 3; since the local water velocity v3 is 
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a bit less than v1, the height h3 is a bit lower than h1 yet still higher than the average depth D.  Conversely, 
at location 2 the local water velocity v2 is greater than the incoming water velocity V0.  This means that the 

Figure 5: Profile view of hull with hull speed wave train (not to scale).

kinetic energy at location 2 is greater than the incoming kinetic energy.  Since energy is conserved, the 
potential energy at location 2 must offset this increase in kinetic energy, so that


 
 
 
 
 . 
 
 
 
 
 (6)

In this case, the height h2 lies below the average depth D; the water is pulled down to satisfy energy 
conservation.

      So what does this water profile along the hull in Figure 5 look like?  That’s right: waves.  Because your 
hull deflects and slows water, then accelerates it, then slows it again you create a disturbance in the water.  
And, since a property of  the water is that it “likes” to support and sustain waves, these local variations in 
water height caused by your hull become the aforementioned forcing functions that drive wave creation.  
Now designers of  modern racing hulls have deduced many crafty ways of  minimizing wave creation and 
wave drag.  And these very high performance hulls allow you to paddle well beyond the theoretical hull 
speed.  But the underlying principles still apply: water is still water, your hull displaces it when under way, 
and the laws of  physics still hold.

      Now all of  this wave stuff  is great, but, when does water become shallow?  Isn’t that the point of  the 
article?  Indeed it is; we just had to cover the preliminaries.  Time to return to Equation (1), which defined 
the phase speed of  surface waves.  Previously we had concerned ourselves with the deep water limit, 
where the hyperbolic tangent function reduced simply to 1.  This holds true when the argument of  the 
hyperbolic tangent equals about 3 (you can check for yourself).  This means water is considered “deep” 
when


 
 
 
 
 , 
 
 
 
 (7)

Equating the wavelength λ to the hull length L, this means that water is “deep” when it is deeper than 
about half  the hull’s length.

      In the shallow water case, where the depth D now becomes much less than the hull length L, the 
expression for the surface wave phase velocity (1) simplifies to


 
 
 
 
 
 .  
 
 
 
 
 (8)

In other words, in very shallow water the phase velocity has nothing to due with the surface wave’s 
wavelength.  It only depends on the gravitational constant g and the depth D.  And as the depth decreases, 
the phase speed decreases as the square root of  depth.  Things have changed!  But what happen in 
between?  Is the transition from deep water behavior to shallow water behavior abrupt or smooth?
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      We can compute the phase velocity vs. depth to answer these questions.  We shall assume that the 
wavelength in Equation (1) corresponds to the length of  an 18’6” C-1 running at 6.65 mph.  The resulting 
data is plotted in Figure 6.  As you can see, when the depth equals the boat length, or even about half  the 
length, the phase velocity equals the hull speed – the plot stays flat.  The phase velocity begins to decrease 
when the depth is about half  the hull’s length – as expected give our analysis – and starts to drop 
significantly when the water depth is approximately one one quarter to one third of  the hull’s length.  This  
corresponds to what paddler’s refer to as “concrete water,” about 4’ to 5’ deep.  As the water depth 
decreases further, the phase velocity drops precipitously.  What this means is that the water inherently 
supports more slowly-moving waves as it becomes shallow.  If  you try to paddle faster than the phase 
speed you are providing a forcing function that tries to make the water faster than it wants want to, and 
you pay the price in wave resistance.

Figure 6: Phase velocity vs. depth for an 18’6” hull.

      One can appreciate this increase wave drag effect by plotting the Froude Number vs. depth, as shown 
in Figure 7.  Recall that the Froude Number expresses the ratio of  hull speed to the phase velocity, and is 
indicative of  increasing wave resistance.  Again, we consider the case of  an 18’6” long C-1 traveling at 
6.65 mph.  This suggests that when the water depth drops below 2’, wave drag forces on the hull begin to 
skyrocket.  Sound familiar?

      Other factors come into play in shallow water besides decreasing surface wave phase speed.  The 
water beneath the hull becomes “squeezed” between hull and bottom, which are now in close proximity to 
each other.  This causes the water beneath and around the hull to accelerate, leading to a downward 
suction force on the hull because of  Bernoulli’s Principle.  This downward suction force is equivalent to 
having the paddlers suddenly gain weight, as the boat is pulled lower in the water.  And as we learned in 
The Science of  Paddling, Part 1, a heavier team is a slower team, everything else being equal, because 
now you are pushing a larger wetted hull area through the water than before you hit the shallows.  
Further, in shallow water surface waves grow in height, and eventually nonlinear effects take over – our 
analysis has been based upon the so-called “small wave” approximation, which soon fails as the wave 
height is no longer small compared to the water’s depth.  At least it was fun while it lasted.
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Figure 7: Froude Number vs. depth.

And finally, about those inside turns.  Water tends to shallow as you get closer to shore, especially on the 
inside of  river turns.  Shallow water effects become more pronounced, then, closer to shore.  We have seen 
in Figure 6 that the phase velocity decreases as water becomes more shallow.  One can construct a “map” 
of  wave patterns over the width of  a river using this information, as suggested in Figure 8.

     Figure 8: Wave refraction, (a) top view, and (b) river cross section.
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      In Figure 8(a) the arrows represent the phase velocity at the depth corresponding to their location.  A 
longer arrow represents a greater phase velocity; they also span the wavelength of  one surface wave cycle.  
As the water becomes more shallow, the phase velocity decreases, as does the wavelength.  In order that 
there be no discontinuities in the wave pattern, the velocity vector must turn toward the shore.  Thus the 
surface waves themselves turn toward the shore as the bottom becomes more shallow there.  This 
phenomenon is called refraction, and is analogous to the bending of  light waves at an air/water interface – 
viewing a pencil in a glass half  full of  water  is a familiar example of  this wave bending phenomena, albeit 
with light waves rather than water waves.  So, as the surface water waves bend toward shore, they want to 
take you with them: toward the shore.  And as if  refraction wasn’t enough, because the wavelength 
shortens, the wave heights must increase in order to satisfy conservation of  energy.  Which is why you 
want to lead the way into a shallow inside turn, rather than follow on a leading boat’s inside shoulder!
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